The search functionality is under construction.

Keyword Search Result

[Keyword] antenna array(82hit)

21-40hit(82hit)

  • An ESPRIT-Based Algorithm for 2D-DOA Estimation

    Yung-Yi WANG  Shu-Chi HUANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E94-A No:9
      Page(s):
    1847-1850

    In this paper, we propose an Estimation of Signal Parameter via Rotational Invariance Techniques (ESPRIT) based algorithm for estimating the two-dimensional-direction-of-arrivals (2D-DOA) of signals impinging on a uniform rectangular array (URA). The basic idea of the proposed algorithm is to successively apply two rounds of one-dimensional ESPRIT (1D-ESPRIT) algorithm for 2D-DOA estimation. The first round 1D-ESPRIT is applied on columns of the URA whereas the other round 1D-ESPRIT is on the rows of the URA. In between, a grouping technique is developed to produces signal groups each containing signals with distinguishable spatial signatures. The grouping technique is performed by using the subspace projection method where the needed spatial information is provided by the first round 1D-ESPRIT algorithm. Computer simulations show that, in addition to having significantly reduced computational complexity, the proposed algorithm possesses better estimation accuracy as compared to the conventional 2D-ESPRIT algorithm.

  • Frequency Domain Adaptive Antenna Array for Broadband Single-Carrier Uplink Transmission

    Wei PENG  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:7
      Page(s):
    2003-2012

    In this paper, a frequency domain adaptive antenna array (FDAAA) algorithm is proposed for broadband single-carrier uplink transmissions in a cellular system. By employing AAA weight control in the frequency domain, the FDAAA receiver is able to suppress the multi-user interference (MUI) and the co-channel interference (CCI). In addition, the channel frequency selectivity can be exploited to suppress the inter-symbol interference (ISI) and to obtain frequency diversity (or the multi-path diversity). Another advantage of the FDAAA algorithm is that its performance is not affected by the spread of angles of arrival (AOA) of the received multi-path signal. In this study the structure of FDAAA receiver is discussed and the frequency domain signal-to-interference-plus-noise-ratio (SINR) after weight control is investigated. The performance of the FDAAA algorithm is confirmed by simulation results. It is shown that, the optimal FDAAA weight to obtain the best BER performance is that which fully cancels the interference when single-cell system is considered; On the other hand, when multi-cell cellular system is considered, the optimal FDAAA weight depends on both the cellular structure and the target signal to noise ratio (SNR) of transmit power control (TPC).

  • Wideband MIMO Compact Antennas with Tri-Polarizations

    Dinh Thanh LE  Masahiro SHINOZAWA  Yoshio KARASAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E94-B No:7
      Page(s):
    1982-1993

    Two designs of wideband compact MIMO antenna using printed dipoles are proposed in this paper. One is a three-port orthogonal polarization antenna and the other is a cube-six-port antenna. Measured results for the antennas show that they resonate at 2.6 GHz and support a bandwidth of over 400 MHz. The worst mutual coupling for the three-port orthogonal polarization antenna is kept under -20 dB whereas that level of the cube-six-port antenna is -18 dB. A number of experiments are conducted on MIMO systems with these compact antennas and linear antenna arrays. Measured data are analyzed to examine channel characteristics, such as cumulative distribution functions (CDFs) of eigenvalues. Furthermore, the effect of different antenna configurations on channel capacity is highlighted and discussed. A high data rate capacity can be achieved with the compact antennas, particularly from the cube-six-port variant. These antennas might be applied in actual MIMO systems in wireless communications.

  • Channel Estimator Employing Narrowband Interference Detector of Wideband OFDM Receiver

    Naohiko IWAKIRI  Takehiko KOBAYASHI  

     
    PAPER

      Vol:
    E93-A No:12
      Page(s):
    2646-2653

    A multiband system can flexibly create spectral holes to avoid interference between different systems. When two systems within the same frequency band coexist, the multiband system must immediately detect the signals from all users to remove unwanted interference. The complication of creating spectral holes is to obtain an occupied frequency band and an angle-of-arrival of interfering system. These parameters must be measured at the receiver of multiband system and then fed back to the transmitter. This paper presents a channel estimator with an interference detector that is developed to implement and test it's functionality in a multiband system. The proposed estimator can precisely detect the parameters before demodulation, and quickly feed back the interfering system parameters to transmitter. The effective design and the detection error rate were evaluated via verification tests in an anechoic chamber and computer simulations. The results of the proposed technique show an ability of interference detection as well as channel estimation.

  • Experimental Study on MIMO Performance of Modulated Scattering Antenna Array in Indoor Environment

    Lin WANG  Qiang CHEN  Qiaowei YUAN  Kunio SAWAYA  

     
    PAPER-Antennas and Propagation

      Vol:
    E93-B No:3
      Page(s):
    679-684

    The modulated scattering antenna array (MSAA) is composed of one normal antenna element and several modulated scattering elements (MSEs). In this paper, a 2-element MSAA is used as the receiving antenna in a 2 2 multiple input multiple output (MIMO) system. MIMO performance of MSAA with various array spacing is measured to investigate the relation between the array spacing and the MIMO performance of the MSAA experimentally in the non-line-of-sight (NLOS) indoor environment. It is found that the error vector magnitude (EVM) and the channel capacity, which reflect MIMO performance, can be affected by the array spacing. The measured results of the MSAA were compared with that of two-dipole antenna array at the same condition.

  • Interference Suppression in OFDM-Antenna Array with Time Shifted Sampling

    Hiroki SUZUKI  Refik Çalar KIZILIRMAK  Yukitoshi SANADA  

     
    LETTER-Communication Theory and Signals

      Vol:
    E92-A No:11
      Page(s):
    2945-2948

    In this letter, an interference suppression scheme by MMSE combining in OFDM-antenna array with time shifted sampling (TSS) is proposed. An array antenna at a base station has been thoroughly investigated to increase the uplink capacity. The performance of the uplink is not only limited by the correlation between the antenna elements, which strongly depends on the spatial aspects of the channel, as well as the interference from the terminals. Numerical results through computer simulation show that the proposed scheme improves bit error rate performance because of interference suppression by MMSE combining and diversity reception by TSS at the same time.

  • Antenna Array Calibration Based on Frequency Selection in OFDMA/TDD Systems Open Access

    Yoshitaka HARA  Yasuhiro YANO  Hiroshi KUBO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:10
      Page(s):
    3195-3205

    This paper proposes a new antenna array calibration technique which uses frequency selection in orthogonal frequency division multiple access (OFDMA)/time division duplexing (TDD) systems. In the proposed method, subbands or frequencies of good channel conditions are initially selected for channel measurements. The relative calibration is performed at the selected subbands, which compensates for mismatch of analogue gains in multiple antennas using the measured uplink and downlink channel parameters. Furthermore, the calibration parameters are interpolated in the frequency domain for the whole bandwidth. The proposed calibration maintains accurate channel reciprocity for the whole bandwidth compared to the conventional calibration which does not use the frequency selection. The proposed calibration technique is effective in exploiting channel reciprocity at both base station and terminals with feasible amount of feedback and low-cost operation.

  • Ultra-Wideband Indoor Double-Directional Channel Estimation Using Transformation between Frequency and Time Domain Signals

    Naohiko IWAKIRI  Takehiko KOBAYASHI  

     
    PAPER-Ultra Wideband System

      Vol:
    E92-A No:9
      Page(s):
    2159-2166

    This paper proposes an ultra-wideband double-directional spatio-temporal channel sounding technique using transformation between frequency- and time-domain (FD and TD) signals. Virtual antenna arrays, composed of omnidirectional antennas and scanners, are used for transmission and reception in the FD. After Fourier transforming the received FD signals to TD ones, time of arrival (TOA) is estimated using a peak search over the TD signals, and then angle of arrivals (AOA) and angle of departure (AOD) are estimated using a weighted angle histogram with a multiple signal classification (MUSIC) algorithm applied to the FD signals, inverse-Fourier transformed from the TD signals divided into subregions. Indoor channel sounding results validated that an appropriate weighting reduced a spurious level in the angle histogram by a factor of 0.1 to 0.2 in comparison with that of non-weighting. The proposed technique successfully resolved dominant multipath components, including a direct path, a single reflection, and a single diffraction, in line-of-sight (LOS) and non-LOS environments. Joint TOA and AOA/AOD spectra were also derived from the sounding signals. The spectra illustrated the dominant multipath components (agreed with the prediction by ray tracing) as clusters.

  • Indoor Event Detection with Eigenvector Spanning Signal Subspace for Home or Office Security

    Shohei IKEDA  Hiroyuki TSUJI  Tomoaki OHTSUKI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:7
      Page(s):
    2406-2412

    This paper proposes an indoor event detection system for homes and offices that is based on electric wave reception such as intrusion into home or office. The proposed system places antenna array on the receiver side and detects events such as intrusion using the eigenvector spanning signal subspace obtained by the antenna array. The eigenvector is based on not received signal strengths (RSS) but direction of arrival (DOA) of incident signals on the antenna array. Therefore, in a static state, the variance of the eigenvector over time is smaller than that of RSS. The eigenvector changes only when the indoor environment of interest changes intermittently and statically, or dynamically. The installation cost is low, because the detection range is wide owing to indoor reflections and diffraction of electric wave and only a pair of transmitter and receiver are used. Experimental results reveal that the proposed method can distinguish the state when no event occurs and that when an event occurs clearly. Since the proposed method has a low false detection rate, it offers higher detection rates than the systems based on RSS.

  • A Novel Cooperative Relaying Network Scheme with Inter-Relay Data Exchange

    Salma Ait FARES  Fumiyuki ADACHI  Eisuke KUDOH  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1786-1795

    In this paper, we propose a novel scheme of cooperative relaying network based on data exchange between relays before forwarding their received data to destination. This inter-relay data exchange step is done during an additional middle-slot in order to enhance the transmit signals from relays to the destination under low transmit power condition. To reduce the propagation errors between relays as well as the required transmit power during this data exchange, only the relay possessing the highest SNR is engaged into exchanging data by forwarding its received signal to the other relays. As for the remaining non-selected relays, i.e. with low SNR, the transmitted signal is estimated by using both signals received separately at different time slots (i.e., 1st and 2nd slot) from source and the 'best' selected relay, respectively, emulating virtual antenna array where appropriate weights for the antenna array are developed. In addition, we investigate distributed transmit beamforming and maximum ratio combining at the relays and the destination, respectively, to combine coherently the received signals. At the relay optimal location and for low SNR condition, the proposed method has significant better outage behavior and average throughput than conventional methods using one or two time slots for transmission.

  • Multipath Diversity through Time Shifted Sampling for Spatially Correlated OFDM-Antenna Array Systems

    Refik Çalar KIZILIRMAK  Yukitoshi SANADA  

     
    PAPER

      Vol:
    E91-A No:11
      Page(s):
    3104-3111

    An essential condition for diversity reception is that the fading distributions between individual received signals of an antenna array are uncorrelated. In this paper, a new technique to improve the performance of transmission with the correlated Rayleigh-fading signals is proposed. In conventional array systems, individual receivers start sampling the received signals at the same time with the same sampling rate. On the other hand, in the proposed scheme, the received signals are again sampled with the same rate, however the sampling points are shifted in each receiver. Numerical results through computer simulation show that with correlated received signals, by applying the proposed technique the correlation can be reduced to a sufficient level for diversity reception.

  • A Novel Pre-Processing Scheme to Enhance GNSS Signal Detection in the Presence of Blanking

    Chung-Liang CHANG  Jyh-Ching JUANG  

     
    PAPER-Navigation, Guidance and Control Systems

      Vol:
    E91-B No:5
      Page(s):
    1589-1598

    In air navigation, the rotation of aircraft results in the discontinuous tracking of GNSS signals. As the platform rotates, the GNSS signals are subject to blanking effects. To solve this problem, a ring-type antenna array is used to prevent signal discontinuity and a hypothesis-test based detection scheme is developed so that the correct antenna combination can be formed to provide uninterrupted reception of GNSS signals in the presence of blanking, noise, and interferences. A fixed threshold detection scheme is first developed by assuming that the statistics of the noise are known. It is shown that the scheme is capable of differentiating signal from noise at each antenna element. To account for the interference effect, a multiple hypothesis test scheme, together with an adaptive selection rule, is further developed. Through this detection and selection process, it is shown, through simulations, that the desired GNSS signals can be extracted and successfully tracked in the presence of blanking and co-channel interference.

  • New Stochastic Algorithm for Optimization of Both Side Lobes and Grating Lobes in Large Antenna Arrays for MPT

    Naoki SHINOHARA  Blagovest SHISHKOV  Hiroshi MATSUMOTO  Kozo HASHIMOTO  A.K.M. BAKI  

     
    PAPER-Antennas and Propagation

      Vol:
    E91-B No:1
      Page(s):
    286-296

    The concept of placing enormous Solar Power Satellite (SPS) systems in space represents one of a handful of new technological options that might provide large scale, environmentally clean base load power to terrestrial markets. Recent advances in space exploration have shown a great need for antennas with high resolution, high gain and low side lobe level (SLL). The last characteristic is of paramount importance especially for the Microwave Power Transmission (MPT) in order to achieve higher transmitting efficiency (TE) and higher beam collection efficiency (BCE). In order to achieve low side lobe levels, statistical methods play an important role. Various interesting properties of a large antenna arrays with randomly, uniformly and combined spacing of elements have been studied, especially the relationship between the required number of elements and their appropriate spacing from one viewpoint and the desired SLL, the aperture dimension, the beamwidth and TE from the other. We propose a new unified approach in searching for reducing SLL by exploiting the interaction of deterministic and stochastic workspaces of proposed algorithms. Our models indicate the side lobe levels in a large area around the main beam and strongly reduce SLL in the entire visible range. A new concept of designing a large antenna array system is proposed. Our theoretic study and simulation results clarify how to deal with the problems of side lobes in designing a large antenna array, which seems to be an important step toward the realization of future SPS/MPT systems.

  • Low-Complexity Conjugate Gradient Algorithm for Array Code Acquisition

    Hua-Lung YANG  Wen-Rong WU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:5
      Page(s):
    1193-1200

    An adaptive array code acquisition for direct-sequence/code-division multiple access (DS/CDMA) systems was recently proposed to enhance the performance of the conventional correlator-based method. The scheme consists of an adaptive spatial and an adaptive temporal filter, and can simultaneously perform beamforming and code-delay estimation. Unfortunately, the scheme uses a least-mean-square (LMS) adaptive algorithm, and its convergence is slow. Although the recursive-least-squares (RLS) algorithm can be applied, the computational complexity will greatly increase. In this paper, we solve the dilemma with a low-complexity conjugate gradient (LCG) algorithm, which can be considered as a special case of a modified conjugate gradient (MCG) algorithm. Unlike the original conjugate gradient (CG) algorithm developed for adaptive applications, the proposed method, exploiting the special structure inherent in the input correlation matrix, requires a low computational-complexity. It can be shown that the computational complexity of the proposed method is on the same order of the LMS algorithm. However, the convergence rate is improved significantly. Simulation results show that the performance of adaptive array code acquisition with the proposed CG algorithm is comparable to that with the original CG algorithm.

  • A Resonant Type LiNbO3 Optical Modulator Array with Micro-Strip Antennas

    Satoshi SHINADA  Tetsuya KAWANISHI  Masayuki IZUTSU  

     
    PAPER-LiNbO3 Devices

      Vol:
    E90-C No:5
      Page(s):
    1090-1095

    For the uplink of a radio-on-fiber system or an electromagnetic field sensor, a resonant type optical modulator array connected with antennas can effectively convert a micro/millimeter-wave to a light wave. We designed and fabricated 10 GHz band resonant modulators and micro-strip antennas. And we demonstrated the simultaneous operation of four modulators using power received by micro strip antennas connected to each modulator. We confirmed that the optical phase change induced by the received power could be proportionally increased with the number of arrays.

  • Frequency-Domain Adaptive Antenna Array for Multi-Code MC-CDMA

    Osamu NAKAMURA  Shinsuke TAKAOKA  Eisuke KUDOH  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:4
      Page(s):
    918-925

    MC-CDMA is an attractive multi-access method for the next generation high-speed mobile communication systems. The uplink transmission performance is limited by the multi-access interference (MAI) from other users since all users share the same bandwidth. Adaptive antenna array can be used to suppress the MAI and to improve the uplink transmission performance. In this paper, we propose a frequency-domain adaptive antenna array for multi-code MC-CDMA. The proposed frequency-domain adaptive antenna array uses a simple normalized LMS (NLMS) algorithm. Although the NLMS algorithm is used, very fast weight convergence within one MC-CDMA symbol duration is achieved since the weight updating is possible as many times as the number of subcarriers within one MC-CDMA symbol duration.

  • A Low Complexity Algorithm for Azimuth/Elevation Angle Estimation by Using Alternate Subspace Projections

    Yung-Yi WANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E90-B No:1
      Page(s):
    114-121

    A one dimensional (1-D) based tree structure algorithm is proposed for estimating the 2D-DOAs of the signals impinging on a uniform rectangular array. The key idea of the proposed algorithm is to successively utilize the 1-D MUSIC algorithm several times, in tree structure, to estimate the azimuth and the elevation angles independently. Subspace projectors are exploited in conjunction with the 1-D MUSIC algorithms to decompose the received signal into several signals each coordinated by its own 2D-DOA. The pairing of the azimuth estimates and the associated elevation estimates is naturally determined due to the tree structure of the algorithm.

  • A Blind Adaptive Decorrelating Detector Using Spatial Signature Estimation

    Yuji KIMURA  Koji SHIBATA  Takakazu SAKAI  Atsushi NAKAGAKI  

     
    LETTER-Spread Spectrum

      Vol:
    E89-A No:10
      Page(s):
    2686-2689

    The decorrelating detector is one of the detecting methods in a direct sequence code division multiple access systems. We investigate the blind adaptive decorrelating detector (BADD) using only the signature of the desired user (DU) according to the assumption that the algorithm is used in downlink. When the BADD is constructed with an antenna array, both the spatial and temporal signature must be taken into consideration for signal detection. We propose the BADD incorporated with the blind estimation of spatial signature (SS) of the DU only from the received signals. As the estimation procedure of SS, the orthogonal projection approximation and subspace tracking algorithm is adopted. The proposed BADD presented the BER improvement with using antenna array. The BER performance has a lower limit with increasing the number of antenna array elements.

  • SMI Adaptive Beamforming Based on Frequency-to-Time Pilot Transform for OFDM System

    Ming LEI  Hiroshi HARADA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:8
      Page(s):
    2261-2265

    We propose an adaptive beamforming scheme for the combination of orthogonal frequency division multiplexing (OFDM) and adaptive antenna array. The combinational scheme is characterized by the sample matrix inverse (SMI) algorithm, frequency-to-time pilot transform and pre-FFT combination. For every OFDM block containing both data and pilot symbols, we transform the frequency-domain pilot symbols to the corresponding time-domain components. One of the obvious advantages of this transform is that the time interval of the antenna weight vector update can be reduced to only one OFDM sample interval, from one OFDM block interval of the conventional beamforming scheme in which the transform is not applied. This feature can greatly accelerate the convergence of SMI beamforming. The simulation results verify that the proposed beamforming scheme is capable of improving the convergence behavior significantly.

  • Adaptive DOA Tracking Approaches for Time-Space System in CDMA Mobile Environments

    Ann-Chen CHANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:8
      Page(s):
    2208-2217

    It was previously shown that the number of array elements must exceed the number of sources for multiple target direction of arrival (DOA) tracking. This is clearly not practical for code-division multiple access (CDMA) communications since the number of mobile users is very large. To overcome the restriction, adaptive angle tracking approaches employing the code-matched filters and parallel Kalman/H∞ algorithms are presented in this paper. The proposed approaches are applied to the base station of a mobile communication system. Different from Kalman prediction algorithm which minimize the squared tracking error, the adaptive H∞ filtering algorithm is a worst case optimization. It minimizes the effect of the worst disturbances (including modeling error of direction matrix models and array structure imperfection, process noise, and measurement noise). Hence, the difficult problem of tracking the crossing mobiles can be successfully handled by using the code-matched filters. Computer simulation is provided for illustrating the effectiveness of the adaptive angle tracking approaches.

21-40hit(82hit)